Thursday, January 14, 2016

Gartner Identifies the Top 10 Strategic Technology Trends for 2016

Analysts Explore Top Industry Trends at Gartner Symposium/ITxpo, in Orlando
Gartner, Inc. today highlighted the top 10 technology trends that will be strategic for most organizations in 2016. Analysts presented their findings during the sold-out Gartner Symposium/ITxpo, which is taking place here through Thursday. Gartner defines a strategic technology trend as one with the potential for significant impact on the organization. Factors that denote significant impact include a high potential for disruption to the business, end users or IT, the need for a major investment, or the risk of being late to adopt.

The top 10 strategic technology trends for 2016 are:

The Device Mesh
The device mesh refers to an expanding set of endpoints people use to access applications and information or interact with people, social communities, governments and businesses. The device mesh includes mobile devices, wearable, consumer and home electronic devices, automotive devices and environmental devices — such as sensors in the Internet of Things (IoT).

Ambient User Experience
The device mesh creates the foundation for a new continuous and ambient user experience. Immersive environments delivering augmented and virtual reality hold significant potential but are only one aspect of the experience. The ambient user experience preserves continuity across boundaries of device mesh, time and space. The experience seamlessly flows across a shifting set of devices and interaction channels blending physical, virtual and electronic environment as the user moves from one place to another.

3D Printing Materials
Advances in 3D printing have already enabled 3D printing to use a wide range of materials, including advanced nickel alloys, carbon fiber, glass, conductive ink, electronics, pharmaceuticals and biological materials. These innovations are driving user demand, as the practical applications for 3D printers expand to more sectors, including aerospace, medical, automotive, energy and the military.

Information of Everything
Everything in the digital mesh produces, uses and transmits information. This information goes beyond textual, audio and video information to include sensory and contextual information. Information of everything addresses this influx with strategies and technologies to link data from all these different data sources. Information has always existed everywhere but has often been isolated, incomplete, unavailable or unintelligible. Advances in semantic tools such as graph databases as well as other emerging data classification and information analysis techniques will bring meaning to the often chaotic deluge of information.

Advanced Machine
Learning In advanced machine learning, deep neural nets (DNNs) move beyond classic computing and information management to create systems that can autonomously learn to perceive the world, on their own. The explosion of data sources and complexity of information makes manual classification and analysis infeasible and uneconomic.

Autonomous Agents and Things
Machine learning gives rise to a spectrum of smart machine implementations — including robots, autonomous vehicles, virtual personal assistants (VPAs) and smart advisors — that act in an autonomous (or at least semiautonomous) manner. While advances in physical smart machines such as robots get a great deal of attention, the software-based smart machines have a more near-term and broader impact. VPAs such as Google Now, Microsoft's Cortana and Apple's Siri are becoming smarter and are precursors to autonomous agents.

Adaptive Security
Architecture The complexities of digital business and the algorithmic economy combined with an emerging "hacker industry" significantly increase the threat surface for an organization. Relying on perimeter defense and rule-based security is inadequate, especially as organizations exploit more cloud-based services and open APIs for customers and partners to integrate with their systems.

Advanced System Architecture
The digital mesh and smart machines require intense computing architecture demands to make them viable for organizations. Providing this required boost are high-powered and ultraefficient neuromorphic architectures. Fueled by field-programmable gate arrays (FPGAs) as an underlining technology for neuromorphic architectures, there are significant gains to this architecture, such as being able to run at speeds of greater than a teraflop with high-energy efficiency.

Mesh App and Service Architecture
Monolithic, linear application designs (e.g., the three-tier architecture) are giving way to a more loosely coupled integrative approach: the apps and services architecture. Enabled by software-defined application services, this new approach enables Web-scale performance, flexibility and agility. Microservice architecture is an emerging pattern for building distributed applications that support agile delivery and scalable deployment, both on-premises and in the cloud.

Internet of Things Platforms
IoT platforms complement the mesh app and service architecture. The management, security, integration and other technologies and standards of the IoT platform are the base set of capabilities for building, managing and securing elements in the IoT. IoT platforms constitute the work IT does behind the scenes from an architectural and a technology standpoint to make the IoT a reality. The IoT is an integral part of the digital mesh and ambient user experience and the emerging and dynamic world of IoT platforms is what makes them possible. "Any enterprise embracing the IoT will need to develop an IoT platform strategy, but incomplete competing vendor approaches will make standardization difficult through 2018," said Mr. Cearley.

Gartner Article Link

Contact me at tduggan(@) at Cogent for more Info or to Network. Cogent delivers customers with Highly Reliable, Secure and Scalable IP Networks with over 190 markets throughout 38 countries in North America, Europe and Asia, with over 57,900 route miles of long-haul fiber and over 27,400 miles of metropolitan fiber.

No comments:

Post a Comment